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ICAT Two Approaches for Reducing Aircraft Noise 

Advanced Operational Procedures

D-8 Aircraft Concept3

New Configurations
• Cleaner Airframes
• Engine Noise Shielding

RNAV Approaches at SEA2

• Project Goal: to expand analysis capabilities to enable the 
modeling the noise impacts of advanced operational 
procedures for current and future aircraft designs

Thrust Cutback on Takeoff at SNA1

• Flight trajectory adjustments
• Scheduling trust cutbacks

• Continuous descent approaches
• Delayed deceleration approaches
• RNAV (GPS guided) approaches

[1] Irvine, Doug (2012) 
[2] FAA (2012) 
[3] NASA (2015) 
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Limitations of Current Standard Noise Analysis Method: 
Aircraft Environmental Design Tool (AEDT)

• AEDT the current industry standard model 
to evaluate aircraft noise impacts4

• Noise-Power-Distance (NPD) based 
computations 

• AEDT/INM analysis assumes engine noise
dominates aerodynamic noise
– Assumption may have been valid only for

earlier generation jet engines

Approach
Illustration of Component Noise Contributions

from Engine & Airframe6
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[4] Boeker, Eric R., et al. (2008) 
[5] Airports Commission (2014)
[6] Airbus (2003) 

Historic and Predicted Aircraft Noise Trends by Year Show Less Decrease in 
Approach Noise Compared to Departure Noise5
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(1) Geometry and performance characteristics of existing aircraft
(2) Design variables for new aircraft types
(3) Power, drag, and configuration settings for all fleet types
(4) Procedure definition (lateral, vertical, speed, configuration)
(5) 4-D trajectory, thrust, and configuration
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Aircraft Performance Representation:
TASOPT vs. BADA 4

5

• Developed and maintained by 
EUROCONTROL

• Database of aircraft performance 
parameters obtained from aircraft 
manufacturers  

• Provides:
– Thrust values
– Drag values for various configurations

• Written by Prof. Mark Drela (MIT)
• Physics-based aircraft sizing and 

optimization program
• Based on mission requirements, 

generates an optimal transport aircraft 
design, including:
– Engine performance and geometry
– Aircraft performance and geometry

Custom	Aircraft	Design	Tool Existing	Aircraft	Analysis	Tool
Transport Aircraft System 
OPTimization (TASOPT)7,8

Base of Aircraft Data (BADA 4)9

[7] Drela, M. (2011)
[8] Drela, M. (2011)
[9] Eurocontrol (2015)
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ICAT Approach Profile Generator

Segment 2Segment 3Segment 4

Segment 1

Example x, y Ground Track

• Generates position (altitude & distance along flight track), velocity, & thrust of an 
approach profile, including in flight & landing roll 
– Builds profile segment-by-segment, given specified requirements for each segment, 

starting from the runway touchdown point
– Ground track is specified independently
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• At each segment, variables are calculated using a force model & kinematics:

• of one segment become of the next segment

Computation Methodology

γsi,

The user specifies: The generator computes:

remaining two
variables are

two of: or calculated, 
using the equations

below:

T
δ flap,δgear,δspeedbrake,Vi

si−1, zi−1,Vi−1si, zi,Vi

a =
F∑
m

=
T +W sin(γ)−D

W / g

ΔV 2

2a
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sin(γ )

D =
1
2
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Vi
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8

• Current industry standard model to 
evaluate aircraft noise impacts8

• Noise-Power-Distance (NPD) based 
computations 
– Interpolation from flight test data 

• Assumes engine noise dominates 
aerodynamic noise

• NASA-developed program 
• Computes far-field engine and airframe 

noise at an observer grid given various 
flight profile and configuration metrics
– Semi-empirical calculations require 

detailed engine/aircraft 
performance inputs
• e.g., Engine mass flow, areas, 

and temperatures, airframe 
geometry, etc.

Custom	Noise	Analysis	Tool Existing	Aircraft	Noise	Analysis	Tool
Aircraft NOise Prediction 

Program (ANOPP)10
Aviation Environmental Design 

Tool (AEDT)4
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[12] Russel, J., Berton, J. (2012) 
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Validating Flight Profile & Noise Model with 
Boston Logan Airport Arrival Data

9

• Noise measurement 
campaign conducted from 
Nov. 2015 – Jan. 2016 in 
collaboration with MIT and 
Lincoln Laboratories
– Noise measurements taken at 3 

locations on approach to Boston 
Logan Runway 22s 

– Noise events correlated to 
specific flights 
• Flight tracks and speeds for each 

flight obtained from PDARS*

• Noise data can be used to 
check flight profile generator 
and noise model accuracy

*Performance Data Analysis and Reporting System
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BADA 4 Implementation: Computing 
Thrust from PDARS Data 

Aircraft s Position (nmi)
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Noise	
Monitor

Lmax Measured (dB) Lmax Computed	 (dB)

NM1 60.7 56.4

NM2 61.3 63.2

NM3 No	Data Recorded --

Preliminary

To Boston Logan 
RWY 22s

LMAX
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n = 61 flights on a 3°
vertical profile
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Example Application:
Delayed Deceleration Approaches (DDAs)

• In conventional approaches, 
aircraft decelerate early in 
the approach 

• DDAs provide potential for 
fuel burn and noise 
reduction11

• In DDAs, initial flap speed 
velocity held as long as 
possible during approach to 
lower drag and thrust 
requirements
– Lower thrust levels 

reduce engine noise
– Higher velocities 

increase airframe noise

A320	
performance
profiles

European	 A320	Flight	Data	Recorder	Analysis	(similar	for	B757	&	B777)12

Conventional Approach vs. DDA11

[11] Dumont, J., et al. (2012) 
[12] Dumont, J., et al. (2011) 

Distance to touchdown

AirspeedTypical
Conventional

Terminal area
entry speed

Final approach
speed

Sample flap 1

Sample flap 2

Runway

Delayed Decel.
=> Low Power/

Low Drag
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Conventional vs. Delayed Deceleration 
Approach Sample Flight Profile
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Conventional vs. Delayed Deceleration 
Approach Sample Flight Profile
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Continuous Descent vs. Delayed Deceleration 
Approach Sample Flight Profile
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Aircraft s Position (nmi)
-30 -25 -20 -15 -10 -5 0

Ai
rc

ra
ft 

Al
tit

ud
e 

(ft
)

0

2000

4000

6000

8000

10000
B737-800 Approach Weight: 146196 lbs, Engine: CFM56-7B26

Aircraft s Position (nmi)
-30 -25 -20 -15 -10 -5 0

In
di

ca
te

d 
Ai

rs
pe

ed
 (k

no
ts

)

100

150

200

250 flaps  0 flaps  5

flaps 10

flaps 15

flaps 25
flaps 30

flaps  0 flaps  5

flaps 10

flaps 15

flaps 25
flaps 30

Flap Change Location
Gear Down Location

Aircraft s Position (nmi)
-30 -25 -20 -15 -10 -5 0

%
 M

ax
im

um
 T

hr
us

t

0

10

20

30

40

50

Idle Thrust



MIT
ICAT

17

Continuous Descent vs. Delayed Deceleration 
Approach Sample Flight Profile
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• Summary:
– Noise analysis framework has been developed to capture the 

noise impacts of advanced operational procedures performed 
by both current and future aircraft 

– This framework has demonstrated the capability of analyzing 
single-event user specified approach procedures
• Currently being validated against BOS Noise Data 

• Next Steps:
– Generate thrust profiles for all flights in Boston Noise 

Measurement Campaign for evaluation in ANOPP and AEDT
• Compare noise computations with measured data to 

improve modeling fidelity
– Evaluate impact of various delayed deceleration approach 

procedures for various aircraft combinations on cumulative 
airport noise

Summary and Next Steps

18
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